1. (a) T		rdrocarbon but-1-ene (C₄H₃) is a member of the homologous series of alkenes. 1-ene has structural isomers.	
	(i)	State the meaning of the term structural isomers.	
			(
	(ii)	Give the IUPAC name of the position isomer of but-1-ene.	
	(iii)	Give the IUPAC name of the chain isomer of but-1-ene.	
	(iv)	Draw the displayed formula of a functional group isomer of but-1-ene.	
(b)	But-	-1-ene burns in a limited supply of air to produce a solid and water only.	
	(i)	Write an equation for this reaction.	
	(ii)	State one hazard associated with the solid product in part (b)(i).	

	(c)		e mole of compound $\mathbf Y$ is cracked to produce two moles of ethene, one mole of 1-ene and one mole of octane $(C_{\epsilon}H_{1\epsilon})$ only.	
		(i)	Deduce the molecular formula of Y .	
				(1)
		(ii)	Other than cracking, give one common use of Y .	
				(1)
	(d)		ars fitted with catalytic converters, unburned octane reacts with nitrogen loxide to form carbon dioxide, water and nitrogen only.	
		(i)	Write an equation for this reaction.	
				(1)
		(ii)	Identify a catalyst used in a catalytic converter.	
			(Total 11	(1) marks)
Q2.		Pent-	1-ene is a member of the alkene homologous series.	
	(a)		nt-1-ene can be separated from other alkenes.	
			e the physical property of alkenes that allows them to be separated from a ure by fractional distillation.	
		•••••		(1)
	(b)	(i)	State the meaning of the term structural isomerism.	

(ii) H	Name the branched chain isomer of pent-1-ene shown below. $\begin{array}{c} H \\ C \\ CH_3 \end{array}$	
H (iii)	Draw the structure of a functional group isomer of pent-1-ene.	
(111)	Draw the structure of a functional group isomer of pent-1-ene.	
buta	cracking of one molecule of compound X produces pent-1-ene, ethen ne in a 1:2:1 mol ratio. uce the molecular formula of X and state a use for the ethene formed.	e and
Mole	cular formula of X	
Use	of ethene	
		(Total 7 m

(ii) Name the process used to obtain hexane from this raw material. (b) C ₂ H ₁₁ has structural isomers. (i) Deduce the number of structural isomers with molecular formula C ₈ H ₁₂ . Write the number in this box. (Space for working) (ii) State one type of structural isomerism shown by the isomers of C ₈ H ₁₁ . (c) One molecule of an alkane X can be cracked to form one molecule of hexane at two molecules of propene. (i) Deduce the molecular formula of X.	a)	(i)	Name the raw material from which hexane is obtained.
(i) Deduce the number of structural isomers with molecular formula C _e H ₁₄ Write the number in this box. (Space for working) (ii) State one type of structural isomerism shown by the isomers of C _e H ₁₄		(ii)	Name the process used to obtain hexane from this raw material.
(ii) Deduce the number of structural isomers with molecular formula C ₀ H ₁₄ Write the number in this box. (Space for working) (ii) State one type of structural isomerism shown by the isomers of C ₀ H ₁₄			
Write the number in this box. (Space for working) (ii) State one type of structural isomerism shown by the isomers of C ₈ H ₁₄	b)	C ₆ H	has structural isomers.
(ii) State one type of structural isomerism shown by the isomers of C ₀ H ₁₄ C) One molecule of an alkane X can be cracked to form one molecule of hexane a two molecules of propene.		(i)	Deduce the number of structural isomers with molecular formula $C_{\scriptscriptstyle 6}H_{\scriptscriptstyle 14}$
c) One molecule of an alkane X can be cracked to form one molecule of hexane a two molecules of propene.			
(c) One molecule of an alkane X can be cracked to form one molecule of hexane a two molecules of propene.		(ii)	State one type of structural isomerism shown by the isomers of C_6H_{14}
	c)		e molecule of an alkane X can be cracked to form one molecule of hexane and
(i) Deduce the molecular formula of X .			
		(1)	Deduce the molecular formula of A.

	(ii)	State the type of cracking that produces a high percentage of alkenes. State the conditions needed for this type of cracking.	
		Type of cracking	
		Conditions	
			(2)
	(iii)	Explain the main economic reason why alkanes are cracked.	
			(1)
			.,
(d)		ane can react with chlorine under certain conditions as shown in the following ation.	
		C_6H_{14} + CI_2 \longrightarrow $C_6H_{13}CI$ + HCI	
	(i)	Both the products are hazardous. The organic product would be labelled 'flammable'. Suggest the most suitable hazard warning for the other product.	
			44)
			(1)
	(ii)	Calculate the percentage atom economy for the formation of $C_6H_{13}CI$ ($M_r = 120.5$) in this reaction.	
			(1)
			` ,

A different chlorinated compound is shown below. Name this compound and state its empirical formula.

(e)

		Name Empirical formula	
			(2) (Total 12 marks)
Q4.		Pentane is a member of the alkane homologous series.	
	(a)	Give the general formula for the homologous series of alkanes.	
			(1)
	(b)	One of the structural isomers of pentane is 2,2-dimethylpropane.	
		Draw the displayed formula of 2,2-dimethylpropane.	
		State the type of structural isomerism shown.	
			(2)
			(2)

(c) A molecule of hydrocarbon **Y** can be thermally cracked to form one molecule of pentane and two molecules of ethene only.

Deduce the molecular formula of Y.

	State why high temperatures are necessary for cracking reactions to occur.	
	Give one reason why thermal cracking reactions are carried out in industry.	
	(Eutra anges)	
	(Extra space)	
		(3)
		(0)
(d)	Write an equation for the incomplete combustion of pentane to form a solid pollutant.	
	Suggest why this solid pollutant is an environmental problem.	
	(Extra space)	
		(0)
		(2)
(e)	Pentane can react with chlorine as shown in the following equation.	
	$C_5H_{12} + CI_2 \rightarrow C_5H_{11}CI + HCI$	
	Calculate the percentage atom economy for the formation of C _s H ₁₁ Cl	
	Deduce how many straight-chain isomers of C₅H₁₁Cl could be formed.	

(Extra space)	
(2/0.0 0/2000)	
	(3)

(f) Consider the following compound.

Name this compound.

Deduce the empirical formula of this compound.

(Total 13 marks)

Q5.Compound **X** is shown below. It is a member of a homologous series of hydrocarbons.

(a)	(i)	Deduce the general formula of the homologous series that contains X .	(1)
	(ii)	Name a process used to obtain a sample of X from a mixture containing other members of the same homologous series.	
			(1)
(b)	The	ere are several isomers of X.	
	(i)	Give the IUPAC name of the position isomer of X .	
			(1)
	(ii)	Draw the structure of a functional group isomer of X .	
			(1)
(c)		high temperatures, one molecule of $C_{\scriptscriptstyle 15}H_{\scriptscriptstyle 32}$ can be converted into two molecules of and one molecule of another compound.	
	(i)	Write an equation for this reaction.	
			(1)
	(ii)	State the name of the process used to obtain a high yield of \mathbf{X} from $C_{15}H_{32}$ Give one reason why this process is used in industry.	
		Name	
		Reason	

			(2)
	(iii)	State why high temperatures are needed for this process.	
			(1)
(d)		pound X can be converted into compound Y . pound Y is shown below.	
H—	H H	H H -C-C-H 	
	(i)	Suggest the formula of a reagent that could be added to X in order to convert it into Y .	
			(1)
	(ii)	Give one use of Y .	(1)
	(iii)	Write an equation to show the reaction of V in a limited supply of air to produce	(-,
	(iii)	Write an equation to show the reaction of Y in a limited supply of air to produce a solid and water only.	
			(1)
	(iv)	When a sample of Y , contaminated with CH₃SH, is burned completely in air, a toxic gas is formed. Identify this toxic gas and suggest a compound that could be used to remove the toxic gas from the products of combustion.	
		Toxic gas	

		Compound used to remove toxic gas	
			(2)
	(v)	Suggest the name of the process that occurs when the toxic gas in part (d)(iv) is removed.	
			(1)
(e)	Ехр	lain why the boiling points of X and Y are similar.	
		(Total 16 ma	(2) rks)